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A Stepwise 1,3-Dipolar Cycloaddition Reaction1 

Sir: 

Substituted 2//-azirines undergo photochemical ring 
opening to form nitrile ylides.2,3 These 1,3-dipoles can be 
intercepted with a variety of dipolarophiles to produce five-
membered heterocyclic rings.2'3 Salem has recently carried 
out some ab initio computations on the ground and excited 
state energy surfaces of the 2i/-azirine molecule.4 His cal
culations indicate that the ring-opened intermediate should 
be capable of dual reactivity when it is intercepted by an 
added dipolarophile. The behavior of the system was pre
dicted to be dependent on the geometry of the transient in
termediate generated from the photolysis. Opening of the 
ring to an intermediate with linear geometry will result in 
the formation of a 1,3-dipolar like species having closed-
shell zwitterionic character. All of the photocycloadditions 
observed to date are in accord with such a species.2,3 Sal
em's calculations also indicate that if the ring is opened to 
give an intermediate with bent geometry, a diradical state 
with partial dipolar character will be obtained. We now 
wish to report evidence which corroborates Salem's calcula
tions and which also provides the first example of a stepwise 
1,3-dipolar cycloaddition reaction.5 

We recently reported that the irradiation of 2-phenyl-3-
methyl-3-allylazirine (1) produced 2-azabicyclo[3.1.0]hex-
2-ene (4) via an unusual 1,1-cycloaddition reaction6 

(Scheme I). In order to probe the generality of this internal 
cycloaddition reaction, we have examined the photochemi
cal behavior of the isomeric 2-methyl-3-phenyl-3-allylazir-
ine (2) system.7 Irradiation of 2 in cyclohexane afforded a 
quantitative yield of azabicyclohexene (4). A control exper
iment showed that 1 and 2 were not interconverted by a 
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Cope reaction under the photolytic conditions. Photolysis of 
2 in the presence of the very reactive dipolarophile, methyl 
trifluoroacetate,8 resulted in the trapping of a nitrile ylide 
and gave cycloadduct 6 in high yield.9 Under these condi
tions, the formation of 4, which is produced in quantitative 
yield in the absence of a trapping agent, is entirely sup
pressed. Photocycloaddition of 1 with added methyl trifluo
roacetate resulted in the formation'of cycloadduct 5 in high 
yield.10 The isolation of 6 in the external trapping experi
ment eliminates a path by which 2 is partially isomerized to 
1 which then rearranges to 4 on further excitation. This 
possibility was initially considered to be a reasonable one 
since the extinction coefficient of 1 at 254 nm (e 8700) is 
much larger than that of 2 (e 220). We have also found that 
the short term irradiation of 1 (20% conversion) produces a 
1:1 mixture of azabicyclohexenes 3 and 4 . " On further ir
radiation, 3 was quantitatively isomerized to 4. No signifi
cant quantities of 3 were found in the irradiation of 2, how
ever. This is probably related to the fact that 3 possesses a 
much larger extinction coefficient than 2 and is optically 
pumped to 4, even at low conversions. 

Support for this contention was obtained from a study of 
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the photobehavior of azirines 7 and 8 (Scheme II). Irradia
tion of 7 in cyclohexane for short periods of time (40% con
version) produced a mixture (4:1) of azabicyclohexenes 13 
and 14 in quantitative yield.12 A short term photolysis (40% 
conversion) of the isomeric 2-methylazirine system (8) af
forded the same two photoproducts (i.e., 13 and 14). On 
further irradiation, 14 was converted into 13. When E-2-
methyl-3-phenyl-3-(2-butenyl)azirine (10) was irradiated 
in cyclohexane (100% conversion), a mixture of the endo 
(25%) and exo (75%) isomers of l-phenyl-3,4-dimethyl-2-
azabicyclo[3.1.0]hex-2-ene (15) were the only products 
formed. This same epimeric mixture of isomers was pro
duced from azirine 9. We previously reported that the pho
tolysis of azirine 11 gave azabicyclohexene 16.6 The forma
tion of the thermodynamically less favored endo isomer 
from the trans olefin corresponds to a complete inversion of 
stereochemistry about the C-C double bond in the cycload-
dition process. We now find that the thermodynamically 
less favored endo isomer (16) is also formed from the irra
diation of azirine 12.13 

The most reasonable explanation to account for the ob
served cycloadditions involves a bent nitrile ylide intermedi
ate (carbene-like) (Scheme III). Attack of the carbene car
bon on the terminal position of the neighboring double bond 
will generate a six-membered ring dipole which contains a 
secondary carbonium ion as well as an aza-allyl anion por
tion. Collapse of this new 1,3-dipole will result in the forma
tion of the observed azabicyclohexene system. The photo-
conversion of the azabicyclohexenes (i.e., 14 —• 13) can also 
be rationalized in terms of a six-membered ring dipole. 

All of the 1,3-dipolar cycloadditions which have been 
subjected to mechanistic scrutiny follow concerted path
ways as measured by the criteria of stereochemistry, solvent 
effects, and isotope effects.14 Huisgen has suggested that 
these concerted 1,3-dipolar additions proceed via a "two-
plane" orientation complex in which the dipole and dipolar-
ophile approach each other in parallel planes.15 A symme
try-energy correlation diagram reveals that such a cycload-
dition is an allowed process.16 With the above allylazirines, 
however, the normal "two-plane" orientation approach of 
the linear nitrile ylide and the allyl Tr-system is impossible 
as a result of the geometric restrictions imposed on the sys
tem. Product formation is possible if the linear nitrile ylide 
undergoes rehybridization to give a species of bent geome
try. Once this occurs, the cycloaddition reaction is no longer 
concerted and instead proceeds by a stepwise-diradical (or 
zwitterionic) intermediate.17 

Further evidence for the involvement of two different 
geometric forms of a nitrile ylide was obtained from com
petitive rate studies. Linear nitrile ylides react preferential

ly with electron-deficient alkenes, since such a pair of ad
dends possesses a narrow dipole-HOMO dipolarophile-
LUMO gap.18 This is the case when the above allyl substi
tuted azirines undergo cycloaddition with external dipolaro-
philes. Thus, fumaronitrile undergoes cycloaddition at a 
much faster rate (ca. 189000) than methyl crotonate and 
aliphatic olefins were found to be ineffective dipolarophiles. 
A study of the quantum yield for azabicyclohexene forma
tion as a function of added dipolarophile shows, however, 
that the internal photocyclization of the allyl azirine system 
occurs readily with these aliphatic substituted olefins.19 

This is consistent with the bent nitrile ylide form since car-
benes are known to react rapidly with electron-rich double 
bonds.20 

We are continuing to explore the scope and mechanistic 
features of this novel cycloaddition reaction and will report 
additional findings at a later date. 
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Preparation and Reactions of 

2-(Alkoxy)-l-(alkyI or arylthio)viny!lithium. Application 

in the Synthesis of 9-Desoxo-9-thiaprostaglandins 

tive formation of the 2-(ethoxy)-l-(pentyl or phenylthio)-

vinyllithium (2a,b). Although, under similar conditions, 

vinyl sulfides2 and vinyl ethers3 are converted to the corre

sponding 1-vinyllithium derivatives in high yields, the lith-

iation of la,b occurs regioselectively at Ci. Evidence for the 

regioselective lithiation is provided by the reactions of the 

anion 2 with electrophiles (E+) to produce exclusively prod

ucts such as 3 4 (Table I). Alternatively, the anion 2a is pre

pared quantitatively by treatment of l-(bromo)-2-(ethoxy)-

l-(phenylthio)ethylene (4)5 with n-butyllithium (1 equiv) 

in ether6 a t - 7 0 ° for 0.5 h.7 

RS 
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At —70°, the anion 2 reacts smoothly with aldehydes and 

ketones to produce the allylic alcohols 58 in excellent yields 

(Scheme I). Under acidic (aqueous HCl, THF, 5 min, 0°) 

or weakly basic (SOCb-pyridine, ether-hexane, —20°) 

conditions, these substances undergo facile rearrangements9 

to produce a-mercapto-a,/3-unsaturated aldehydes 8 (Y = 
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Table I. Reaction of 2-(Ethoxy)-l-(pentyl or phenylthio)viny!lithium with Electrophiles 
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a Unless otherwise indicated the yields were based on products isolated by preparative TLC. b The yields were determined by spectral data 
of the crude products. These adducts were subjected to rearrangement reactions without purification. c Reaction in THF. d Reaction in THF/ 
HMPA. e Unless otherwise indicated, all rearrangements and solvolyses proceeded in 85-90% yields. /Rearrangement with 1 N aqueous HCl 
in THF at 0° for Y = CHO and with p-TsOH in ethanol at 0° for Y = CH(OEt)2. S Rearrangement with SOCl2 and pyridine in ether-hexane 
at -20° for Y = CHO. h Solvolysis with aqueous AcOH at 50° for Y = CHO and withp-TsOH in ethanol for Y = CH(OEt)2. ' Solvolysis pro
ceeded in 40-50% yield. /Reference 17. 
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